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Peierls-insulator Mott-insulator transition in 1D

H. Fehskea,*, G. Welleinb, A. Wei�ea, F. G .ohmanna, H. B .uttnera, A.R. Bishopc

a Physikalisches Institut, Universt .at Bayreuth, Theoretische Physik I, Universitätsstrasse 30, 95440 Bayreuth, Germany
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Abstract

In an attempt to clarify the nature of the crossover from a Peierls band insulator to a Mott Hubbard insulator, we

analyze ground-state and spectral properties of the one-dimensional half-filled Holstein–Hubbard model using exact

diagonalization techniques. r 2002 Elsevier Science B.V. All rights reserved.
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In a wide range of quasi-one-dimensional materials,

such as MX chains, conjugated polymers or ferroelectric

perovskites, the itineracy of the electrons strongly

competes with electron–electron and electron–phonon

(EP) interactions, which tend to localize the charge

carriers by establishing spin-density-wave and charge-

density-wave ground states, respectively. Hence, at half-

filling, Peierls (PI) or Mott (MI) insulating phases are

energetically favored over the metallic state. An inter-

esting and still controversial question is whether or not

only one quantum critical point separates the PI and MI

phases at T ¼ 0 [1]. Furthermore, how is the crossover

modified when phonon dynamical effects, which are

known to be of particular importance in low-dimen-

sional materials [2,3], are taken into account?

The paradigm in studies of this subject is the half-

filled Holstein–Hubbard model (HHM), defined by the

Hamiltonian

H ¼ � t
X

i;s

ðcwisciþ1s þ h:c:Þ þ U
X

i

nimnik

þ go0

X

i;s
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X

i

bwi bi: ð1Þ

Here cwis creates a spin-s electron at Wannier site i

(ni;s ¼ cwiscis), bwi creates a local phonon of frequency o0;
t denotes the hopping integral, U is the on-site Hubbard

repulsion, g is a measure of the EP coupling strength,

and the summation over i extends over a periodic chain

of N sites.

Applying basically exact numerical methods [4], we

are able to diagonalize the HHM on finite chains,

preserving the full dynamics of the phonons. In order to

characterize the ground-state and spectral properties of

the HHM in different parameter regimes, we have

calculated the charge- and spin-structure factors at

wave number q ¼ p

ScðpÞ ¼
1
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4
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(Sz
i ¼ ðnim � nikÞ=2), the local magnetic moment L ¼

3/ðSz
i Þ

2S; the kinetic energy Ekin ¼ �t/
P

i;sðc
w
isciþ1s þ

h:c:ÞS; and the incoherent part of the optical conduc-

tivity

sregðoÞ ¼
p
N

X

ma0

j/c0j #j jcmSj2

Em � E0
dðo� Em þ E0Þ; ð4Þ

where #j ¼ �iet
P

i;sðc
w
isciþ1 s � cwiþ1 scisÞ: Some typical

results are shown in Figs. 1 and 2.

Our conclusions can be summarized as follows:

(i) At U ¼ 0 the ground state is a Peierls distorted

state in the adiabatic limit o0-0 for any finite EP

coupling. As in the Holstein model of spinless fermions

*Corresponding author. Tel.: +49-921-55-3212; fax: +49-

921-55-2991.

E-mail address: holger.fehske@uni-bayreuth.de

(H. Fehske).

0921-4526/02/$ - see front matter r 2002 Elsevier Science B.V. All rights reserved.

PII: S 0 9 2 1 - 4 5 2 6 ( 0 1 ) 0 1 1 8 3 - 8



[3], at o0 > 0 quantum phonon fluctuations destroy the

Peierls instability for small EP interaction strength g [2].

Above a critical threshold gcðo0Þ; the HHM describes a

PI with gapped spin and charge excitations. In the non-

adiabatic strong EP coupling regime, the system is

typified by a charge-ordered bipolaronic insulator rather

than a traditional Peierls band insulator. The PI regime

is characterized by a large (small) charge (spin) structure

factor, a strongly reduced kinetic energy, and an optical

response that is dominated by multiphonon absorption

and emission processes.

(ii) Increasing U at fixed g; the Peierls dimerization

and the concomitant charge order are suppressed.

Accordingly the system evolves from the PI to the MI

regime. From our numerical data we found evidence for

only one critical point Uc (cf., e.g., the development of

the optical gap in the conductivity spectra shown Fig. 2).

At Uc; in our finite system a site parity change of the

ground state takes place from P ¼ þ1 (PI) to P ¼ �1

(MI), and both the spin and the charge gaps are

expected to vanish in the thermodynamic limit (cf.

Table 1).

(iii) Above Uc; in the MI phase, the low-energy

physics of the system is governed by gapless spin and

massive charge excitations. In the Mott–Hubbard

insulating regime the optical gap is by its nature a

correlation gap. It is rapidly destroyed by doping the

system away from half-filling [5].

(iv) Different from the case where the lattice vibra-

tions are coupled to the transfer amplitudes of the

electrons (SSH-type models), the HHM exhibits no spin-

Peierls instability in the large-U limit of localized

electrons interacting via an effective antiferromagnetic

exchange interaction.
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Fig. 1. Staggered charge- and spin-density correlations (upper

panel), kinetic energy and local magnetic moment (lower panel)

in the ground state of the Holstein–Hubbard model (o0=t ¼ 1;
N ¼ 8). Results are shown at g2o0=t ¼ 0 (}), 0.5 (J), and

2.0 (&).
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Fig. 2. Optical absorption in the HHM (o0=t ¼ 1; N ¼ 8).

Dashed lines give the integrated spectral weights SregðoÞ ¼Ro
0 sregðo0Þ do0 [normalized by SregðNÞ].

Table 1

Parity of the ground state of the HHM, Pjc0S ¼ 7jc0S; where

the site inversion symmetry operator P is defined by PcwisPw ¼
cwN�is for i ¼ 0; 1;y; N � 1. Charge and spin gaps, defined by

DcðNÞ ¼E0ðN=2 þ 1;N=2ÞþE0ðN=2�1;N=2Þ�2E0ðN=2;N=2Þ
and DsðNÞ ¼ E0ðN=2 þ 1;N=2 � 1Þ � E0ðN=2;N=2Þ; respec-

tively, where E0ðNm;NkÞ denotes the ground-state energy of

the system with Nm spin-up and Nk spin-down electrons. Note

that Dc incorporates ground-state lattice relaxation effects and

therefore differs from the optical gap [2]. In the infinite system,

we expect that Dc ¼ DsX0 for UpUc; whereas Dc > Ds ¼ 0 for

U > Uc: Results are given at g2o0 ¼ 2; o0=t ¼ 1

U=t 2 4 6

P þ � �
Dcð8Þ=t 1.84 0.24 1.7

Dsð8Þ=t 1.62 0.13 0.28
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